
Состав простых латуней
В формулу латуни обязательно входит медь и цинк. Медь - основной элемент в сплаве, а цинк - легирующая добавка, которая существенно определяет свойства латуни. Кроме цинка в состав многокомпонентных латуней входят алюминий, марганец, железо, никель, кремний, Ni, Si, Sn, Pb, As. В состов брозы тже входят медь, как основа, и цинк, как легирующая добавка. Но кроме цинка в состав бронзы включены другие элементы. Количество таких элементов и их влияние на свойства бронзы сравнимо или больше чем у цинка, поэтому бронзы и латуни традиционно выделены как отдельные типы медных сплавов. Сравнивая формулу латуни с формулой бронзы можно найти близкие по химическому составу сплавы, которые будут иметь и схожие свойства. Массовые марки латуни и бронзы существенно отличаются по составу, так что вопрос о классификации медных сплавов носит академический характер.
Двойные латуни - это сплав меди и цинка, в котором остальные элементы содержатся в качестве примесей. В составе латуни содержание цинка по массе не превышает 40 %, а минимальное его количество - 4 %. Двойные латуни - это преимущественно сплавы с α-структурой (Л96, Л90, Л85, Л68 и др.), которая имеет ГЦК решетку. Кроме α-твердого раствора, медь с цинком образуют ряд промежуточных фаз: β, γ и др. Ближайшая к меди промежуточная β-фаза — это твердый раствор на основе соединения CuZn с ОЦК решеткой. Высокотемпературная β-фаза достаточно пластична, поэтому многие марки латуней при горячей деформации нагревают в однофазную β-область. При понижении температуры до 454°—468°С и в зависимости от концентрации легирующего цинка происходит переход β-фазы в более хрупкую и твердую β'-фазу. γ-фаза представляет собой твердый раствор на основе соединения Cu5Zn8, отличается очень высокой хрупкостью и ее нахождение в конструкционных сплавах меди не допускается.
Фазовый состав двухкомпонентных (простых) латуней
В структуре однофазных латуней, в которых содержание цинка близко к пределу растворимости цинка в твердом растворе меди 39%, присутствует небольшое количество неравновесной β-фазы из-за медленно протекающих диффузионных процессов в медно-цинковых сплавах при низких температурах. Такое количество включения β-фазы не оказывают заметного влияния на свойства α-латуней. По механическим и технологическим свойствам двухфазные простые латуни относятся к однофазным α-латуням.
Влияние примесей на свойства
Примеси не являются основными легирующими элементами простых латуней, но они влияют на свойства сплавов. Получить сплав без примесных атомов практически невозможно, т. к. посторонние элементы содержатся в сырье для производства меди и цинка. Сверхчистые металлы имеют высокую стоимость и их применение узкоспециализированно и не оправдано для массового производства. Количество примесей контролируется стандартами, что гарантирует механические и технологические свойства марочных сплавов меди.
Отрицательно влияют на свойства латуней легкоплавкие примеси, которые ограниченно растворяются в медно-цинковых сплавах. Легкоплавкие включения в составе латуни выделяются по границам зерен и ухудшают пластические свойства при горячей деформации. Однофазные α-латуни наиболее чувствительны к таким примесям.
Примеси, которые не образуют самостоятельных фаз, не влияют отрицательно на механические и технологические свойства латуней.
- Алюминий находится полностью в твердом растворе и как примесь не ухудшает свойства латуней. Малые добавки алюминия при плавке образуют на поверхности расплава защитную пленку из оксида алюминия. Это препятствует испарению и угару цинка.
- Никель и марганец в малых концентрациях входят в твердый раствор и слабо влияют на физические, механические и технологические свойства латуней. Никель поднимает температуру рекристаллизации латуней.
- Железо при комнатной температуре имеет низкую растворимость в медно-цинковом твердом растворе и образует в латунях самостоятельную γFe-фазу. Эта ферромагнитная фаза существенно изменяет магнитные свойства латуней. В составе антимагнитной латуни концентрация железа не превышает 0,03 %. Железо повышает прочностные и технологические качества сплавов, т. к. затрудняет рекристаллизацию и измельчает зерно.
- Кремний — примесь, которая входит в твердый раствор. Кремний улучшает пайку и сварку латуней, повышает стойкость к коррозионнму растрескиванию.
- Висмут требует особого контроля, он не растворяется в латунях сплавах в твердом состоянии и создает легкоплавкую эвтектику на границах зерен, которая состоит из чистого висмута. Висмут провоцирует горячеломкость латуней, оказыва более сильное влияние на однофазные. Его концентрация в латунях лимитировано 0,002—0,003%
- Свинец слабо растворим в медно-цинковых сплавах в твердом состоянии и при затвердевании выделяется в элементарном виде на границах зерен в форме мелких частиц сферической формы. Примеси свинца ухудшают пластичность α-латуней при повышенных температурах. Свинец провоцирует горячеломкость, особенно однофазных латуней, поэтому содержание свинца в двойных α-сплавах не превышает 0,03 %. Добавки свинца в состав латуни улучшают обрабатываемость резанием.
- Сурьма — вредная примесь в медно-цинковых сплавах. Она ухудшает технологическую пластичность при горячей и холодной обработках давлением. Концентрации сурьмы до 0,1% в двухфазных латунях препятствуют обесцинкованию.
- Мышьяк растворяется в твердой меди до 5%по массе при температуре 25°С, но в медно-цинковом твердом растворе его растворимость не более 0,1%. Хрупкая промежуточная фаза As2Zn образуется при концентрация мышьяка более 0,5%, Эта фаза выделяется в виде прослоек на границах зерен, что приводит к ломкости латуней. Мышьяк в малых количествах 0,025—0,06 % при микродобавках защищает латуни от коррозионного растрескивания и обесцинкования в морской воде.
- Фосфор малорастворим в медно-цинковых сплавах при затвердевании. В твердом растворе фосфор образует промежуточную фазу, которая повышает твердость и сильно снижает пластические свойства латуней. Небольшие количества фосфора повышают механические свойства латуней и уменьшают диаметр зерен отливок. Скорость роста зерен в деформированных латунях увеличивается из-за фосфора во время рекристаллизацонного отжига. Медно-цинковые сплавы не нуждаются в раскислении фосфором, т. к. цинк — более сильный раскислитель, чем фосфор В промышленных марках латуней содержание фосфора не превышает 0,005—0,01 %
Состав специальных латуней
В специальные, многокомпонентные латуни к основному легирующему элементу цинку для улучшения свойств сплава добавляют алюминий, марганец, железо, никель, кремний, Ni, Si, Sn, Pb, As. В состав сплава вводят один или несколько перечисленных элементов совместно. Содержание каждого элемента не превышает 1—3 %.
Для чего в медно-цинковые сплавы — латуни вводят помимо цинка другие легирующие элементы:
- повышение механических (прочностных) свойств;
- улучшение коррозионной стойкости;
- повышение стойкости при кавитации, антифрикционных свойств, обрабатываемости резанием
Легирующие элементы Al, Sn, Si, Mn, Ni растворяются в α и β фазах латуней, повышают прочность и твердость латуни, но уменьшают пластичность и вязкость. Алюминий и олово сильнее упрочняют латуни, чем кремний и марганец. Свинец снижает прочность латуней. Комплексное легирование несколькими элементами наибольше упрочняет медно-цинковые сплавы, но уменьшает относительное удлинение по сравнению с двойными сплавами системы Cu-Zn. Добавки железа и марганца до 2—3 %, которые повышают пластичность специальных латуней. Комплексное легирование латуней сохраняет хорошую обрабатываемость давлением при высоких температурах и несколько худшую при низких. Легирующие элементы Al, Mn, Si, Ni увеличивают коррозионную стойкость латуней, а никель повышает стойкость к коррозионному растрескиванию.
Ферромагнитная фаза с железом γFe кристализируется в специальных латунях ЛАЖ-1-1 и ЛЖМц59-1-1 и создает дополнительные центры кристаллизации. Такие сплавы образуют мелкозернистую литую структуру. Частицы γFe-фазы препятствуют росту зерна при рекристаллизационном отжиге после пластической деформаци. Это свойство используют для получения мелкозернистой структуры деформированных полуфабрикатов.
Свинец практически не растворяется в медной основе латуней и располагается в виде дисперсных частиц в объеме и на границах зерен . Свинцовые латуни ЛС74-3, ЛС63-3, ЛС59-1 и др. отлично обрабатываются резанием и образуют сыпучую стружку. Свинец улучшает антифрикционные свойства многокомпонентных латуней.
Влияние легирующих элементов на фазовые границы. Коэффициенты Гийе
Легирующие элементы в многокомпонентных латунях смещают границы между фазовыми областями α и α+β (39 % Zn) при темперетурах от 450°С и ниже в двойной системе Cu-Zn . Границы двухфазной области α+β' в системе Cu-Zn почти на меняют полжения при понижении температуры. Положение границы α/(α+β') при 450°С соответствует 39% концентрация Zn, а межфазной границы (α+β')/ β' — 46% Zn. По положению этих границ оценивают фазовый состава многокомпонентных латуней. Для этого вводят коэффициент Гийе замены цинка в формулу латуни. Гийе установил, что влияние легирующих элементов на фазовый состав аналогично увеличению или уменьшению концентрации цинка. Коэффициент Гийе показывает, какому содержанию цинка соответствует 1%по массе легирующего элемента степени изменения на фазового состава латуни.
Si | Al | Sn | Pb | Fe | Mn | Ni |
10...12 | >4...6 | 2 | 1 | 0,9 | 0,5 | -1,4 |
Формула для определения кажущегося по структуре содержания цинка X:
- А - содержание цинка в сплаве
- В - содержание меди
- ci — концентрация i-го элемента, вводимого в латунь
- ki — коэффициент Гийе для i-го легирующего элемента.

Только никель повышает растворимость цинка в меди. Увеличении содержания никеля в (α + β)-лaтyни уменьшает количество β-фазы, при достаточно высоком содержании Ni сплав становится однофазной α-латунью. Отальные легирующие элементы снижают растворимость цинка в меди и сдвигают границу между фазовыми областями в сторону более низкого содержания цинка. Кремний и алюминий силнее всего снижают растворимость цинка в меди и увеличивают количество β-фазы в специальных латунях. Когда концентрация расчетного цинка в составе латуни 46 % и больше, специальная латунь приобретает однофазную β'-структуру . Железо и свинец не растворимы в медно-цинковых сплавах в твердом состоянии, поэтому коэффициенты Гийе для этих металлов близки к единице, а линии, разделяющие фазовые области , соответствуют границе раздела двухфазных областей с трехфазными: α+γFe/α+β+γFe и α+Pb/α+β+Pb